

# Innenzahnradpumpe Konstantes Verdrängungsvolumen

# Typ PGH

**RD 10223** 

Ausgabe: 2019-02 Ersetzt: 04.2013



| Nenn | größe | 5 | <br>16 |
|------|-------|---|--------|

Nenngröße 5 ... 16

Baugröße 2 und 3

- Geräteserie 2X
- Maximaler Betriebsdruck 350 bar
- Verdrängungsvolumen 5.2 ... 16.0 cm<sup>3</sup>

#### Merkmale

- Konstantes Verdrängungsvolumen
- Geringes Betriebsgeräusch
- Geringe Pulsation des Volumenstromes
- Hoher Wirkungsgrad auch bei geringer Drehzahl und Viskosität durch Dichtspaltkompensation
- Geeignet für großen Viskositäts- und Drehzahlbereich
- Kombinierbar mit Innenzahnradpumpen, Radialkolbenpumpen, Zahnringpumpen und Außenzahnradpumpen
- ▶ Befestigungsmaße nach ISO 3019-1
- Anschlussmaße nach ISO 6162-1
- Geeignet für HLP-, HETG-, HEES-, HFD- und HFC-Druckflüssigkeiten
- Verwendung in dauerfesten Antrieben mit hohen Drücken bei sehr hohen Lastwechselzahlen mit konstanter oder variabler Drehzahl im Direktantrieb oder Speicherladefunktion, z. B.:
  - Kunststoffmaschinen
  - Werkzeugmaschinen
  - Pressen
  - Prüfstände

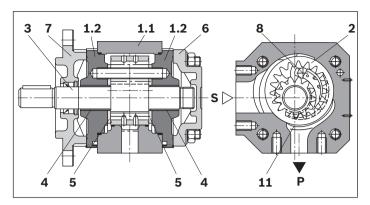
| Inhalt                                       |    |
|----------------------------------------------|----|
| Bestellangaben                               | 2  |
| Funktionsbeschreibung                        | 3  |
| Technische Daten                             | 4  |
| Kennlinien-Mittelwerte der Baugrößen 2 und 3 | 5  |
| Abmessungen Baugröße 2                       | 6  |
| Abmessungen Baugröße 3                       | 7  |
| Mehrfachpumpen                               | 9  |
| Projektierungshinweise                       | 12 |
| Einbauhinweise                               | 13 |
| Inbetriebnahmehinweise                       | 14 |

# Bestellangaben

2

| 01         | 02             | 03           |            | 04            |             | 05           | 06         | 07       | 08         | 09 | 10 | 11  |
|------------|----------------|--------------|------------|---------------|-------------|--------------|------------|----------|------------|----|----|-----|
| PG         | Н              |              | _          | 2X            | /           | 1            |            | 1        | 07         |    | U2 |     |
|            | ļ              | ļ            |            |               |             |              |            |          |            |    |    |     |
| Гур        |                |              |            |               |             |              |            |          |            |    |    |     |
| 01 Inner   | zahnradpum     | npe, konsta  | ntes Verd  | rängungsvol   | ımen, spa   | ltkompensie  | rt         |          |            |    |    | PG  |
| Baureihe   |                |              |            |               |             |              |            |          |            |    |    |     |
| 02 Hoch    | druckpumpe     | , Höchstdr   | ıck 350 b  | ar            |             |              |            |          |            |    |    | Н   |
| Baugröße   | n BG           |              |            |               |             |              |            |          |            |    |    |     |
| 03 BG2     |                |              |            |               |             |              |            |          |            | ,  |    | 2   |
| BG3        |                |              |            |               |             |              |            |          |            |    |    | 3   |
| Gerätesei  | ie             |              |            |               |             |              |            |          |            |    |    |     |
| 04 Gerät   | eserie 20      | 29 (20 2     | 9: unver   | inderte Einba | au- und An  | schlussmaß   | e)         |          |            |    |    | 2X  |
| Nenngröß   | en             |              |            |               |             |              |            | NG       |            |    |    | •   |
| 05 BG2     |                |              |            |               |             |              |            | 5        |            |    |    | 005 |
|            |                |              |            |               |             |              |            | 6        |            |    |    | 006 |
|            |                |              |            |               |             |              |            | 8        |            |    |    | 800 |
| BG3        |                |              |            |               |             |              |            | 11       |            |    |    | 011 |
|            |                |              |            |               |             |              |            | 13       |            |    |    | 013 |
|            |                |              |            |               |             |              |            | 16       |            |    |    | 016 |
| Drehricht  | ungen          |              |            |               |             |              |            |          |            |    |    |     |
| 06 Bei B   | lick auf Triek | owelle       |            |               |             |              |            | rechts   |            |    |    | R   |
|            |                |              |            |               |             |              |            | links    |            |    |    | L   |
| Triebwelle | en             |              |            |               |             |              |            |          |            |    |    |     |
| 07 Zylind  | drische Welle  | e mit Passfe | eder, DIN  | 6885          |             |              |            |          |            |    |    | E   |
| Zahn       | welle nach IS  | SO 3019-1    |            |               |             |              |            | 16-4 9T  | 16/32DP    |    |    | R   |
|            |                |              |            |               |             |              |            | 19-4 11T | 16/32DP    |    |    | S   |
| Leitungsa  | nschlüsse      |              |            |               |             |              |            |          |            |    |    |     |
| 08 Saug    | · und Drucka   | ınschluss: S | AE-Flans   | chanschluss   | nach ISO (  | 6162-1       |            |          |            |    |    | 07  |
| Dichtunge  | en             |              |            |               |             |              |            |          |            |    |    |     |
|            |                | und FKM-W    | ellendich  | tring, geeign | et für HLP  | -, HETG-, HE | ES- und HI |          | ssigkeiten |    |    | V   |
| FKM-       | Dichtungen ı   | mit NBR-We   | ellendicht | ring, geeigne | et für HFC- | Druckflüssig | keiten     |          |            |    |    | w   |
| Anbauflar  | nsch           |              | <u> </u>   |               |             |              |            |          |            |    |    |     |
| 10 2-Loc   | h-Anbauflan    | sch nach IS  | O 3019-1   |               |             |              |            |          |            |    |    | U2  |
|            |                |              |            |               |             |              |            |          |            |    |    | ,   |
| 11 Weite   | ere Angaben    | im Klartext  |            |               |             |              |            |          |            |    |    |     |
|            | 0              |              |            |               |             |              |            |          |            |    |    |     |

# Bestellbeispiel


PGH3-2X/016RE07VU2

# Materialnummer

R900951305

Es sind nicht alle Varianten nach dem Typenschlüssel möglich! Bitte wählen Sie die gewünschte Pumpe anhand der Auswahltabellen (Seite 6 bis 8) oder nach Rücksprache mit Bosch Rexroth aus.

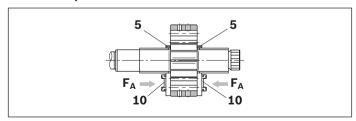
# **Funktionsbeschreibung**



#### **Aufbau**

Hydraulikpumpen des Typs PGH sind spaltkompensierte Innenzahnradpumpen mit konstantem Verdrängungsvolumen.

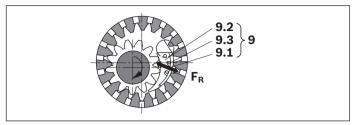
Sie bestehen im wesentlichen aus Gehäuse (1.1), Lagerdeckel (1.2), Hohlrad (2), Ritzelwelle (3), Gleitlagern (4), Axialscheiben (5), Abschlussdeckel (6), Befestigungsflansch (7) und Anschlagstift (8), sowie dem Segmentfüllstück (9), das sich aus Segment (9.1), Segmentträger (9.2) und den Dichtrollen (9.3) zusammensetzt.


#### Saug- und Verdrängungsvorgang

Die hydrodynamisch gelagerte Ritzelwelle (3) treibt das innenverzahnte Hohlrad (2) in der gezeigten Drehrichtung an.

Während der Drehbewegung erfolgt auf einem Winkel von ca. 90° im Saugbereich die Volumenvergrößerung. Es entsteht ein Unterdruck und Flüssigkeit strömt in die Kammern.

Das sichelförmige Segmentfüllstück (**9**) trennt Saug- und Druckraum. Im Druckraum tauchen die Zähne der Ritzelwelle (**3**) wieder in die Zahnlücken des Hohlrades (**2**). Die Flüssigkeit wird über den Druckkanal (**P**) verdrängt.


### **Axiale Kompensation**



Die axiale Kompensationskraft  $F_A$  wirkt im Bereich des Druckraumes und wird mit dem Druckfeld (**10**) in den Axialscheiben (**5**) erzeugt.

Die axialen Längsspalten zwischen den rotierenden und den feststehenden Teilen sind dadurch außerordentlich klein und gewährleisten eine optimale axiale Abdichtung des Druckraumes.

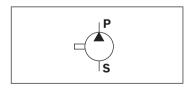
#### **Radiale Kompensation**



Die radiale Kompensationskraft  $F_R$  wirkt auf Segment (9.1) und Segmentträger (9.2).

In Abhängigkeit vom Betriebsdruck werden die beiden Segmentfüllstücke (9.1) und (9.2) gegen die Kopfdurchmesser von Ritzelwelle (3) und Hohlrad (2) gedrückt. Die Flächenverhältnisse und die Lage der Dichtrollen (9.3) zwischen dem Segment und Segmentträger sind so ausgelegt, dass eine weitgehend leckspaltfreie Abdichtung zwischen Hohlrad (2), Segmentfüllstück (9) und Ritzelwelle (3) erreicht wird.

Federelemente unter den Dichtrollen (9.3) sorgen für ausreichende Anpressung, auch bei sehr niedrigen Drücken.


### Hydrodynamische und hydrostatische Lagerung

Die auf die Ritzelwelle (3) wirkenden Kräfte werden von hydrodynamisch geschmierten Radialgleitlagern (4) aufgenommen; die auf das Hohlrad (2) wirkenden, von dem hydrostatischen Lager (11).

### Verzahnung

Die Verzahnung ist eine Evolventenverzahnung. Ihre große Eingriffslänge ergibt eine geringe Volumenstom- und Druckpulsation; diese geringen Pulsationsraten tragen wesentlich zum geräuscharmen Lauf bei.

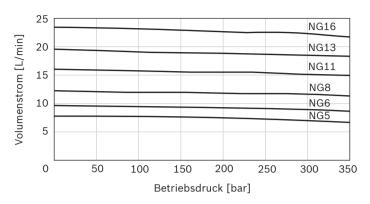
# **▼** Symbol



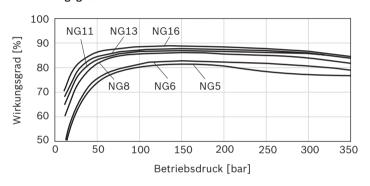
# **Technische Daten**

| Baugröße        |                                    |                  | BG                | 2                     | 2              | 2               | 3               | 3            | 3    |  |  |  |
|-----------------|------------------------------------|------------------|-------------------|-----------------------|----------------|-----------------|-----------------|--------------|------|--|--|--|
| Nenngröße       |                                    |                  | NG                | 5                     | 6              | 8               | 11              | 13           | 16   |  |  |  |
| Verdrängungs    | volumen, geometrisch               | $V_g$            | cm <sup>3</sup>   | 5.24                  | 6.5            | 8.2             | 11.0            | 13.3         | 16.0 |  |  |  |
| Antriebsdrehz   | ahl                                | n <sub>min</sub> | min <sup>-1</sup> |                       | 600            |                 |                 |              |      |  |  |  |
|                 |                                    | n <sub>max</sub> | min <sup>-1</sup> |                       |                |                 | 3000            |              |      |  |  |  |
| Minimal erford  | derliche Antriebsleistung          | $p_{zu}$         | kW                |                       | ,              |                 | 0,55            |              |      |  |  |  |
| Betriebsdruck   | absolut                            |                  |                   |                       |                |                 |                 |              |      |  |  |  |
| Eingang         |                                    | р                | bar               |                       |                | 0.8 2 (kurzz    | eitig bei Start | 0.6 bar)     |      |  |  |  |
| Ausgang         | kontinuierlich                     |                  |                   |                       |                |                 |                 |              |      |  |  |  |
|                 | Mineralöle                         | $p_n$            | bar               | 315                   |                |                 |                 |              |      |  |  |  |
|                 | Sonderflüssigkeiten                | $p_n$            | bar               | 210                   |                |                 |                 |              |      |  |  |  |
|                 | intermittierend <sup>1)</sup>      |                  |                   |                       |                |                 |                 |              |      |  |  |  |
|                 | Mineralöle                         | $p_{\text{max}}$ | bar               |                       |                |                 | 350             |              |      |  |  |  |
|                 | Sonderflüssigkeiten                | $p_{\text{max}}$ | bar               |                       |                |                 | 230             |              |      |  |  |  |
|                 | (bei n = 1450 min <sup>-1</sup> ,  | $q_V$            | L/min             | 7.5                   | 9.3            | 11.8            | 15.8            | 19.1         | 23.0 |  |  |  |
| p = 10 bar, v = | : 46 mm²/s)                        |                  |                   | 4.0                   | 4.4            | 4.0             | 4.0             |              |      |  |  |  |
| Masse           |                                    | m                | kg                | 4.3 4.4 4.6 4.8 5 5.3 |                |                 |                 |              |      |  |  |  |
| Wellenbelastu   | ng                                 |                  |                   | Radiale u             | nd axiale Kräf | te (z .B. Rieme | enscheibe) nur  | nach Rückspr | ache |  |  |  |
| Befestigungsa   | Befestigungsart Flanschbefestigung |                  |                   |                       |                |                 |                 |              |      |  |  |  |

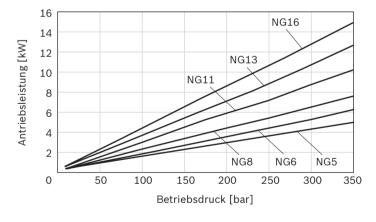
|                                   | Klassifizierung                 | Geeignete<br>Dichtungsausführung                                                                     | Normen                                                                                                                  | Datenblatt                                                                                                                                                        |
|-----------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   | HLP, HLPD, HVLP, HVLPD          | V                                                                                                    | DIN 51524                                                                                                               | 90220                                                                                                                                                             |
| ► umweltverträglich               | HETG                            |                                                                                                      |                                                                                                                         |                                                                                                                                                                   |
|                                   | HEES                            |                                                                                                      | ISO 15380                                                                                                               | 90221                                                                                                                                                             |
|                                   | HEPG                            | _                                                                                                    |                                                                                                                         |                                                                                                                                                                   |
| ▶ wasserfrei, schwerentflammbar   | HFDU                            | V                                                                                                    | 100 12022                                                                                                               | 90222                                                                                                                                                             |
|                                   | HFDR                            | _ v                                                                                                  | 150 12922                                                                                                               | 90222                                                                                                                                                             |
| ► wasserhaltig, schwerentflammbar | HFC                             | W                                                                                                    | ISO 12922                                                                                                               | 90223                                                                                                                                                             |
|                                   | ▶ wasserfrei, schwerentflammbar | HLP, HLPD, HVLP, HVLPD  ► umweltverträglich  HETG  HEES  HEPG  ► wasserfrei, schwerentflammbar  HFDU | DichtungsausführungHLP, HLPD, HVLP, HVLPDV▶ umweltverträglichHETGVHEESVHEPG▶ wasserfrei, schwerentflammbarHFDU<br>HFDRV | DichtungsausführungHLP, HLPD, HVLP, HVLPDVDIN 51524▶ umweltverträglichHETG<br>HEES<br>HEES<br>HEPGVISO 15380▶ wasserfrei, schwerentflammbarHFDU<br>HFDRVISO 12922 |


| Weitere Angaben zu den Druckflüssigkeiten:                                                         |       |                       |                                                   |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------|-------|-----------------------|---------------------------------------------------|--|--|--|--|--|--|--|--|
| Temperaturbereich                                                                                  | °C    | ► Mineralöle          | -10 +80; bei anderen Temperaturen bitte anfragen! |  |  |  |  |  |  |  |  |
|                                                                                                    | °C    | ► Sonderflüssigkeiten | -10 +50; bei anderen Temperaturen bitte anfragen! |  |  |  |  |  |  |  |  |
| Umgebungstemperaturbereich                                                                         | °C    |                       | <b>-</b> 20 +60                                   |  |  |  |  |  |  |  |  |
| Viskositätsbereich                                                                                 | mm²/s |                       | 10 300; zulässige Startviskosität 2000            |  |  |  |  |  |  |  |  |
| Maximal zulässiger Verschmutzungsgrad<br>der Druckflüssigkeit<br>Reinheitsklasse nach ISO 4406 (c) |       |                       | Klasse 20/18/15                                   |  |  |  |  |  |  |  |  |

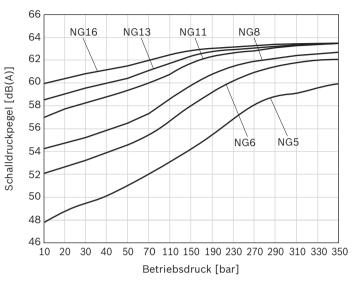
# Hinweis


Bei Geräteeinsatz außerhalb der angegebenen Werte bitte anfragen!

# Kennlinien-Mittelwerte der Baugrößen 2 und 3


#### **▼** Volumenstrom




# **▼** Wirkungsgrad

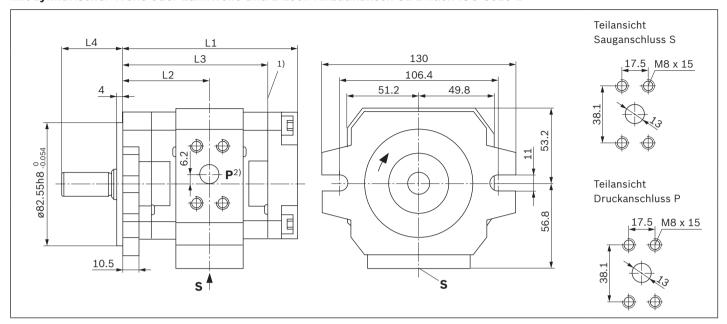


# **▼** Antriebsleistung



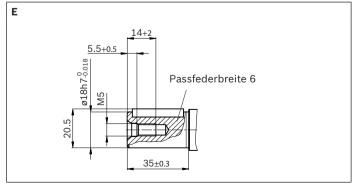
## **▼** Schalldruckpegel




#### Hinweis

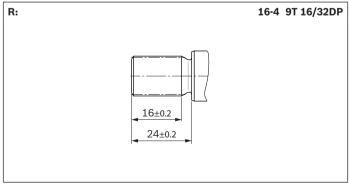
- ► Kennlinien gemessen bei  $n = 1450 \text{ min}^{-1}$ ;  $v = 41 \text{ mm}^2/\text{s}$ ;  $\theta = 50 \text{ °C}$
- ► Schalldruckpegel gemessen im Schallmessraum nach DIN 45635, Blatt 26; Abstand: Schallaufnehmer – Pumpe = 1 m

# 6


# Abmessungen Baugröße 2

# Mit zylindrischer Welle oder Zahnwelle und 2-Loch-Anbauflansch 82-2 nach ISO 3019-1

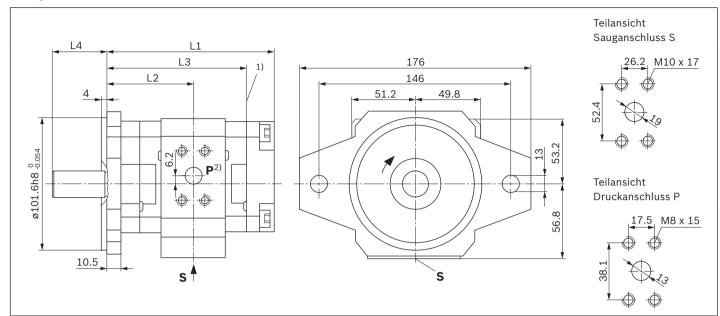



| Тур                 |        |          |         | Materialnummern | L1      | L2   | L3   | L4   | Sauganschluss S <sup>3)</sup> | Druckanschluss P <sup>3)</sup> |  |
|---------------------|--------|----------|---------|-----------------|---------|------|------|------|-------------------------------|--------------------------------|--|
| 005                 | R      | _        | 07VU2   | R900968999      | - 110   | 54.2 | 89.5 |      |                               |                                |  |
| 005                 | L      | _        | 07 002  | R900703725      | 110     | 54.2 | 69.5 |      |                               |                                |  |
| PGH2-2X/ <b>006</b> | R      | _        | 07VU2   | R900951301      | - 112.5 | 55.5 | 92   | 41   | DN12 (CAE 1/2")               | DN12 (CAE 1/2")                |  |
| PGH2-2X/000         | L<br>R | _        | ) / VUZ | R900961547      | 112.5   | 55.5 | 92   | 41   | DN13 (SAE 1/2")               | DN13 (SAE 1/2")                |  |
| 000                 |        | _        | 071/110 | R900951302      | 110     | F7 0 | 05.5 |      |                               |                                |  |
| 800                 | L      | E        | 07VU2   | R900961548      | 116     | 57.3 | 95.5 |      |                               |                                |  |
| 005                 | R      | _        | 071/110 | R900972378      | 110     | F4.0 | 00.5 |      |                               |                                |  |
| 005                 | L      | K        | 07VU2   | R900703727      | - 110   | 54.2 | 89.5 |      |                               |                                |  |
| DCU2 2V/006         | R      | <u> </u> | 071/110 | R900961549      | 110 F   | EE E | 0.2  | 21 5 | DN12 (CAE 1/2")               | DN12 (CAE 1/2")                |  |
| PGH2-2X/ <b>006</b> | )6     | K        | 07VU2   | R900961550      | 112.5   | 55.5 | 92   | 31.5 | DN13 (SAE 1/2")               | DN13 (SAE 1/2")                |  |
| 000                 | R      | _        | 071/110 | R900961551      | 110     | F7.0 | 05.5 |      |                               |                                |  |
| 800                 | L      | K        | 07VU2   | R900961552      | 116     | 57.3 | 95.5 |      |                               |                                |  |

# ▼ Zylindrische Welle mit Passfeder DIN 6885

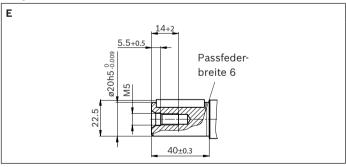


- 1) Ab hier beginnt bei Mehrfachpumpen das Kombiteil
- 2) Abgebildet sind rechtsdrehende Pumpen, bei linksdrehenden liegt der Druckanschluss gegenüber!


# ▼ Zahnwelle nach ISO 3019-1



3) SAE-Flanschanschluss nach ISO 6162-1

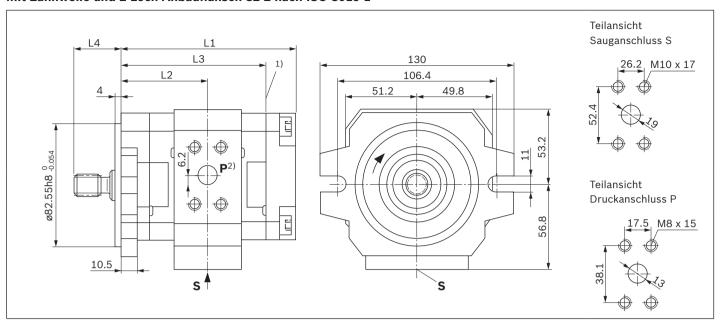

# Abmessungen Baugröße 3

# Mit zylindrischer Welle und 2-Loch-Anbauflansch 101-2 nach ISO 3019-1



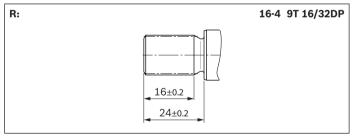
| Тур                                  | Materialnummern | L1    | L2   | L3    | L4     | Sauganschluss S <sup>3)</sup> | Druckanschluss P <sup>3)</sup> |
|--------------------------------------|-----------------|-------|------|-------|--------|-------------------------------|--------------------------------|
| <b>011</b> R <b>E</b> 07VU2          | R900951303      | - 128 | 66.5 | 107.5 |        |                               |                                |
| L 07702                              | R900961553      | 120   | 66.5 | 107.5 |        | DN25 (SAE 1")                 |                                |
| PGH3-2X/ <b>013</b> R <b>E</b> 07VU2 | R900951304      | - 133 | 69   | 112.5 | 41     |                               | DN13 (SAE 1/2")                |
| PGH3-2X/ <b>013</b> — <b>E</b> 07VU2 | R900961554      | - 133 |      |       | -<br>- |                               |                                |
| R F 077///12                         | R900951305      | 100   | 74.5 | 447.5 |        |                               |                                |
| <b>016</b> E 07VU2                   | R900961555      | - 138 | 71.5 | 117.5 |        |                               |                                |

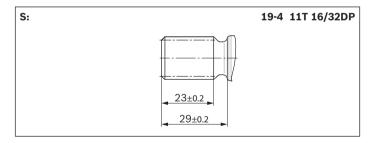
# ▼ Zylindrische Welle mit Passfeder DIN 6885




<sup>1)</sup> Ab hier beginnt bei Mehrfachpumpen das Kombiteil

<sup>2)</sup> Abgebildet sind rechtsdrehende Pumpen, bei linksdrehenden liegt der Druckanschluss gegenüber!


<sup>3)</sup> SAE-Flanschanschluss nach ISO 6162-1


### Mit Zahnwelle und 2-Loch-Anbauflansch 82-2 nach ISO 3019-1



| Тур                                  | Materialnummern | L1      | L2   | L3  | L4   | Sauganschluss S <sup>3)</sup> | Druckanschluss P <sup>3)</sup> |  |
|--------------------------------------|-----------------|---------|------|-----|------|-------------------------------|--------------------------------|--|
| <b>011</b> R 07VU2                   | R900961556      | - 121.5 | 60   | 101 |      |                               |                                |  |
| L 07 VO2                             | R900961559      | 121.5   | 60   | 101 |      |                               |                                |  |
| R R 07/412                           | R900961557      | 100 F   | 60 F | 106 | 21 5 | DN25 (SAE 1")                 | DN13 (SAE 1/2")                |  |
| PGH3-2X/ <b>013</b> — <b>R</b> 07VU2 | R900961560      | - 126.5 | 62.5 | 106 | 31.5 |                               |                                |  |
| <b>016</b> R 07VU2                   | R900961558      | - 131.5 | 65   | 111 | -    |                               |                                |  |
| <b>016</b> R 07VU2                   | R900961561      | - 131.5 | 65   | 111 |      |                               |                                |  |
| PGH3-2X/ <b>016</b> R                | R901281698      | - 131.5 | 65   | 111 | 37   | DN25 (CAT 1")                 | DN12 (CAE 1/2")                |  |
| PGH3-2X/ <b>016</b> — <b>S</b> 07VU2 | R901465533      | - 131.5 | 65   | 111 | 31   | DN25 (SAE 1")                 | DN13 (SAE 1/2")                |  |

# ▼ Zahnwelle nach ISO 3019-1





<sup>1)</sup> Ab hier beginnt bei Mehrfachpumpen das Kombiteil

<sup>2)</sup> Abgebildet sind rechtsdrehende Pumpen, bei linksdrehenden liegt der Druckanschluss gegenüber!

<sup>3)</sup> SAE-Flanschanschluss nach ISO 6162-1

# Mehrfachpumpen

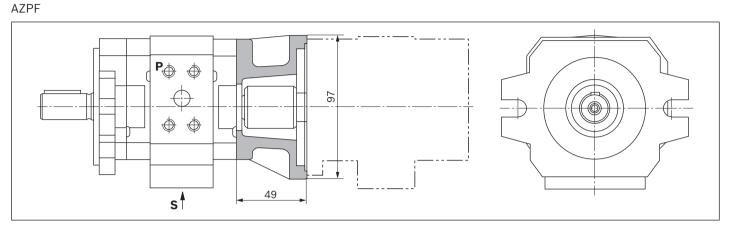
Alle Innenzahnradpumpen vom Typ PGH sind kombinationsfähig, jede Pumpe hat eine Abtriebsverzahnung. Die Kombinationsmöglichkeiten und die Materialnummern der nötigen Kombinationsteile können Sie der folgenden Tabelle entnehmen.

| Hintere Pumpe | Vordere Pumpe |            |
|---------------|---------------|------------|
|               | PGH2-2X       | PGH3-2X    |
| PGH2-2X/RU2   | R900886137    | R900886137 |
| PGH3-2X/RU2   | R900886137    | R900886137 |
| PGP2-2X/JU2   | R900886137    | R900886137 |
| PGF2-2X/JU2   | R900886137    | R900886137 |
| AZPFRRB       | R900886137    | R900886137 |
| PR4-1XWA      | R901015657    | R901015657 |
| PGZ4-1X/TU2   | R901405441    | R901405441 |
| PGZ5-1X/TU2   | R901405441    | R901405441 |

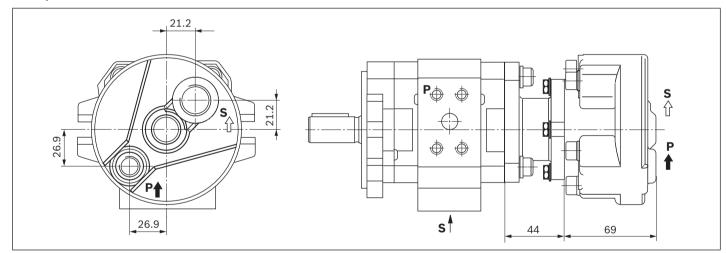
# Bestellangaben

10

|      | stenang   | Jaben    |                    |                   |                        |        | o-    |         | 0.5     |        | <u> </u> | 00       |        | 1.5               |     |          |          |          |          |    |        |
|------|-----------|----------|--------------------|-------------------|------------------------|--------|-------|---------|---------|--------|----------|----------|--------|-------------------|-----|----------|----------|----------|----------|----|--------|
| 0    | 1 02      | ,        | 03                 | T _               | 04<br>T                | ,      | 05    | 1,      | 06<br>T | 1,     | 07<br>   | 08       | 09     | 10<br>            |     | 11       | 12<br>T  |          | 13<br>T  | 14 | 15     |
|      |           | /        |                    | +                 | <u> </u>               | /      |       | +       | 1       | /      | 1        | <u> </u> |        | <u> </u>          | +   | <u> </u> | <u> </u> | +        | <u> </u> |    |        |
| Тур  | 1)        |          |                    |                   |                        |        |       |         |         |        |          |          |        |                   |     |          |          |          |          |    |        |
|      | 2-fach    |          |                    |                   |                        |        |       |         |         |        |          |          |        |                   |     |          |          |          |          |    | P2     |
|      | 3-fach    |          |                    |                   |                        |        |       |         |         |        |          |          |        |                   |     |          |          |          |          |    | Р3     |
|      |           |          |                    |                   |                        |        |       |         |         |        |          |          |        |                   |     |          |          |          |          |    |        |
| 02   | Baureih   | ne der 1 | 1. Pump            | pe <sup>1)</sup>  |                        |        |       |         |         |        |          |          |        |                   |     |          |          |          |          |    |        |
|      |           |          |                    |                   |                        |        |       |         |         |        |          |          |        |                   |     |          |          |          |          | _  |        |
| 03   | Nenngr    | öße de   | r 1. Pui           | mpe <sup>1)</sup> |                        |        |       |         |         |        |          |          |        |                   |     |          |          |          |          |    |        |
|      |           |          |                    |                   |                        |        |       |         |         |        |          |          |        |                   |     |          |          |          |          |    |        |
| 04   | Baureih   | ne der 2 | 2. Pump            | oe <sup>1)</sup>  |                        |        |       |         |         |        |          |          |        |                   |     |          |          |          |          |    |        |
|      |           |          |                    |                   |                        |        |       |         |         |        |          |          |        |                   |     |          |          |          |          | _  |        |
| 05   | Nenngr    | öße de   | r 2. Pui           | mpe <sup>1)</sup> |                        |        |       |         |         |        |          |          |        |                   |     |          | ,        |          |          | [  |        |
|      |           |          |                    |                   |                        |        |       |         |         |        |          |          |        |                   |     |          |          |          |          |    |        |
| 06   | Baureih   | ne der 3 | 3. Pump            | pe <sup>1)</sup>  |                        |        |       |         |         |        |          |          |        |                   |     |          |          |          |          | [  |        |
|      |           |          |                    |                   |                        |        |       |         |         |        |          |          |        |                   |     |          |          |          |          |    |        |
| 07   | Nenngr    | öße de   | r 3. Pui           | mpe <sup>1)</sup> |                        |        |       |         |         |        |          |          |        |                   |     |          |          |          |          | [  |        |
| Dre  | hrichtun  | ng       |                    |                   |                        |        |       |         |         |        |          |          |        |                   |     |          |          |          |          | _  | _      |
| 08   | Bei Blic  | k auf T  | riebwe             | lle               |                        |        |       |         |         |        |          | re       | chts   |                   |     |          |          |          |          |    | R      |
|      |           |          |                    |                   |                        |        |       |         |         |        |          | lir      | ıks    |                   |     |          |          |          |          |    | L      |
| Trie | bwelle c  | der 1. F | umpe               |                   |                        |        |       |         |         |        |          |          |        |                   |     |          |          |          |          |    |        |
| 09   | Zylindri  | sche W   | /elle mi           | it Passi          | feder, [               | OIN 68 | 85    |         |         |        |          |          |        |                   |     |          |          |          |          |    | E      |
|      | Zahnwe    | elle nac | h ISO 3            | 3019-1            |                        |        |       |         |         |        |          |          |        | T 16/3            |     |          |          |          |          |    | R      |
|      |           |          |                    |                   |                        |        |       |         |         |        |          | 19       | 9-4 11 | T 16/3            | 2DP |          |          |          |          |    | S      |
|      | ungsans   |          |                    |                   |                        |        |       |         |         |        |          |          |        |                   |     |          |          |          |          |    |        |
| 10   | Saug- u   | nd Dru   | ıckansc            | hluss:            | SAE-Fla                | anscha | nschl | uss nac | h ISO   | 6162-1 | -        |          |        |                   |     |          |          |          |          |    | 07     |
| Trie | bwelle d  | der 2. F | Pumpe <sup>1</sup> | L)                |                        |        |       |         |         |        |          |          |        |                   |     |          |          |          |          |    |        |
| 11   | Zylindri  | sche W   | /elle mi           | it Passi          | feder, [               | OIN 68 | 85    |         |         |        |          |          |        |                   |     |          |          |          |          |    | Α      |
|      | Zahnwe    | elle nac | h ISO 3            | 3019-1            |                        |        |       |         |         |        |          |          |        | T 16/32           |     |          |          |          |          | ]  | J      |
|      |           |          |                    |                   |                        |        |       |         |         |        |          |          |        | T 16/32           |     |          |          |          |          |    | R      |
|      |           |          |                    |                   |                        |        |       |         |         |        |          | 19       | 9-4 11 | T 16/3            | 2DP |          |          |          |          |    | Т      |
|      | ungsans   |          |                    |                   | <b>e</b> <sup>1)</sup> |        |       |         |         |        |          |          |        |                   |     |          |          |          |          |    |        |
| 12   | Saug- u   | nd Dru   | ıckansc            | hluss             |                        |        |       |         |         |        |          |          |        |                   |     |          |          |          |          | L  |        |
|      | bwelle d  |          |                    |                   |                        |        |       |         |         |        |          |          |        |                   |     |          |          |          |          |    |        |
| 13   | Zylindri  |          |                    |                   |                        | OIN 68 | 85    |         |         |        |          |          |        |                   |     |          |          |          |          |    | Α      |
|      | Zahnwe    | elle nac | n ISO 3            | 3019-1            |                        |        |       |         |         |        |          |          |        | T 16/32           |     |          |          |          |          | }  | J      |
|      |           |          |                    |                   |                        |        |       |         |         |        |          |          |        | T 16/32<br>T 16/3 |     |          |          |          |          | }  | R<br>T |
|      |           |          |                    |                   | 1)                     |        |       |         |         |        |          |          | 7-4 II | 1 10/3            | 2Ur |          |          |          |          |    |        |
|      | ungsans   |          |                    |                   | <b>e</b> <sup>1)</sup> |        |       |         |         |        |          |          |        |                   |     |          |          |          |          | г  |        |
| 14   |           |          |                    |                   |                        |        |       |         |         |        |          |          |        |                   |     |          |          |          |          |    |        |
|      | pauflanso |          |                    |                   | 00.00                  | 10.1   |       |         |         |        |          |          |        |                   |     |          |          | <u> </u> |          | г  | 110    |
| 15   | 2-Loch-   | Anbaul   | iiansch            | nach I            | SU 301                 | TA-T   |       |         |         |        |          |          |        |                   |     |          |          |          |          |    | U2     |

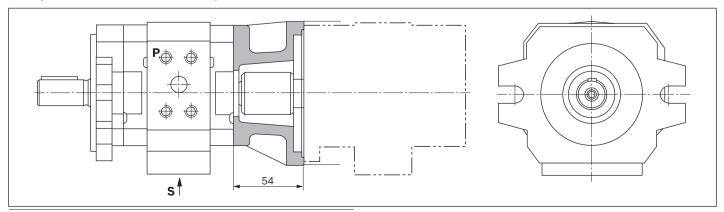

Detailangabe siehe Typenschlüssel/Datenblatt der jeweiligen
 Pumpe

# Abmessungen


Die Maßzeichnungen stellen die vordere Pumpe und das Kombiteil dar.<sup>1)</sup>

# PGH2/PGH3

PGH2/PGH3 mit Kombiteil für PGH2, PGH3, PGF2, PGP2,




# PGH2/PGH3 + R4-Mini



# PGH2/PGH3 + PGZ

PGH2/PGH3 mit Kombiteil für PGZ4, PGZ5



 Maße der Einzelpumpen siehe Seite 6 bis 8 bzw. die entsprechenden Datenblätter der hinteren Pumpe.

# Projektierungshinweise

Beim Einsatz von Innenzahnradpumpen ist zusätzlich eine manuelle, schaltbare oder automatische Entlüftungsmöglichkeit vorzusehen. Der Entlüftungspunkt für manuelle Entlüftung muss in der Druckleitung vor dem ersten Ventil oder Rückschlagventil vorgesehen werden, damit eine drucklose Entlüftung durchgeführt werden kann.

#### **Technische Daten**

Alle genannten technischen Daten sind abhängig von Fertigungstoleranzen und gelten bei bestimmten Randbedingungen.

Beachten Sie, dass deshalb Streuungen möglich sind, und bei bestimmten Randbedingungen (z. B. Viskosität) sich auch die technischen Daten ändern können.

#### Kennlinien

Beachten Sie bei der Auslegung des Antriebsmotors die maximal möglichen Einsatzdaten anhand der auf der Seite 5 dargestellten Kennlinien.

### Schalldruckpegel

Die dargestellten Werte für Schalldruckpegel auf Seite 5 sind gemessen in Anlehnung an die DIN 45635, Blatt 26. Das heißt, dabei ist nur die Schallemission der Pumpe dargestellt. Umgebungseinflüsse (Aufstellungsort, Verrohrung usw.) sind nicht berücksichtigt.

Diese Werte gelten jeweils nur für eine Pumpe.
Bei Innenzahnradpumpen ist die Anregung von Ventilen,
Rohrleitungen, Maschinenteilen usw. bedingt durch die
geringe Volumenstrompulsation (ca. 2 bis 3 %) sehr gering.
Trotzdem kann bei ungünstigen Einflüssen der Schalldruckpegel am Aufstellungsort des Aggregates um 5 bis 10 dB(A)
höher liegen als die Werte der Pumpe selbst.

### Mehrfachpumpen

- ► Es gelten die gleichen allgemeinen technischen Daten wie bei Einzelpumpen (siehe Seite 4).
- ▶ Die kombinierten Pumpen müssen alle die gleiche Drehrichtung haben.
- ▶ Die Pumpe mit dem größten Drehmoment sollte als erste Pumpe vorgesehen weden.
- ► Das maximale Durchtriebsdrehmoment muss für jede Anwendung vom Pojekteur überprüft werden. Dies gilt auch für schon vorhandene (verschlüsselte) Mehrfachpumpen.
- ► Die Summe der Drehmomente in einer Mehrfachpumpe darf das maximale Antriebsdrehmoment nicht überschreiten.
- ▶ Eine gemeinsame Ansaugung ist nicht möglich.
- ► Vor dem Betrieb von Pumpenkombinationen mit unterschiedlichen Druckflüssigkeiten nehmen Sie bitte Rücksprache mit Bosch Rexroth.
- ► Mittlere und hintere Pumpen müssen die Triebwellenausführung "R" (verzahnt) haben.
- Das Antriebsdrehmoment einer Pumpenstufe errechnet sich wie folgt:

$$T = \frac{\Delta p \cdot V \cdot 0.0159}{\eta_{hydr\text{-mech}}}$$

| Legende |                                       |
|---------|---------------------------------------|
| Т       | Drehmoment [Nm]                       |
| Δр      | Betriebsdruck [bar]                   |
| V       | Verdrängungsvolumen [cm³]             |
| η       | Hydraulisch-mechanischer Wirkungsgrad |
|         |                                       |

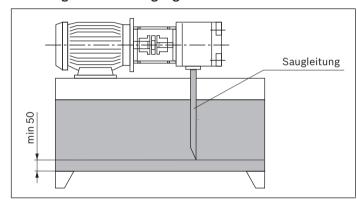
## ▼ Maximal zulässige Drehmomente [Nm]

| Тур  | Antriebsdrehmoment |             |             | Abtriebs-  |
|------|--------------------|-------------|-------------|------------|
|      | Zyl. Welle E       | Zahnwelle R | Zahnwelle S | drehmoment |
| PGH2 | 100                | 80          | -           | 75         |
| PGH3 | 110                | 80          | 155         | 75         |

### Pumpenabsicherungsblock

Zur Begrenzung des Betriebsdruckes oder (und) zur magnetbetätigten Entlastung des Betriebsdruckes empfiehlt Bosch Rexroth Pumpenabsicherungsblöcke nach den Datenblättern 25880 und 25891.

#### **Einbauhinweise**


#### Flüssigkeitsbehälter

- Nutzvolumen des Behälters den Betriebsbedingungen anpassen!
- ▶ Die zulässige Flüssigkeitstemperatur darf nicht überschritten werden, eventuell Kühler vorsehen!

#### Leitungen und Anschlüsse

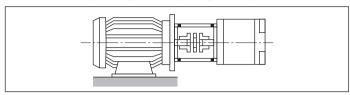
- ► Schutzstopfen an Pumpe entfernen.
- ▶ Die lichte Weite der Rohre den Anschlüssen entsprechend auswählen (Sauggeschwindigkeit 1 bis 1.5 m/s).
- ▶ Eingangsdruck siehe Seite 4.
- ► Rohrleitungen und Verschraubungen vor dem Montieren sorgfältig reinigen.

## Vorschlag für Rohrverlegung

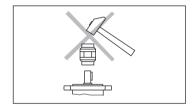


- ► Rücklaufflüssigkeit darf unter keinen Umständen wieder direkt angesaugt werden, d. h. größtmöglichen Abstand zwischen Saug- und Rücklaufleitung wählen.
- ► Saugleitung und Rücklaufaustritt immer deutlich unterhalb des Ölspiegels legen.
- ▶ Auf eine saugdichte Montage der Rohrleitungen achten.

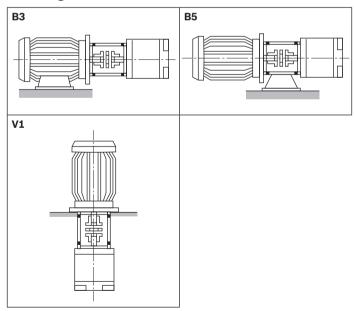
### **Filter**


Möglichst Rücklauf- oder Druckfilter verwenden. (Saugfilter nur in Verbindung mit Unterdruckschalter/ Verschmutzungsanzeige einsetzen).

#### Druckflüssigkeit


- ► Beachten Sie bitte unsere Vorschriften nach Datenblatt 90220.
- ▶ Bosch Rexroth empfiehlt Markendruckflüssigkeiten.
- Verschiedene Druckflüssigkeitensorten dürfen nicht gemischt werden, da Zersetzung und Nachlassen der Schmierfähigkeit die Folge sein können.
- ► Entsprechend den Betriebsbedingungen muss die Druckflüssigkeit in gewissen Zeitabständen erneuert werden. Dabei ist es erforderlich, den Druckflüssigkeitsbehälter von Rückständen zu reinigen.

#### Antrieb


E-Motor + Pumpenträger + Kupplung + Pumpe



- Keine Radial- und Axialkräfte auf die Pumpenantriebswelle zulässig!
- ▶ Motor und Pumpe müssen exakt fluchten!
- ► Verwenden Sie immer eine Kupplung die zum Ausgleich von Wellenverlagerungen geeignet ist!
- Beim Aufbringen der Kupplung Axialkräfte vermeiden, d. h. nicht mit Schlaggegenständen oder durch Aufpressen montieren! Innengewinde der Antriebswelle verwenden!



### Einbaulagen



### Inbetriebnahmehinweise

#### Vorbereitung

- ► Kontrollieren, ob die Anlage sorgfältig und sauber montiert ist.
- ► Druckflüssigkeit nur über Filter mit der erforderlichen Mindestrückhalterate erfüllen.
- ► Pumpe über Saug- oder Druckrohr vollständig mit Druckflüssigkeit füllen.
- ► Drehrichtung des Motors auf Übereinstimmung mit Drehrichtung gemäß Pumpentyp überprüfen.

#### Entlüften

- ► Entlüftungsanschluss an der Anlage manuell öffnen oder drucklosen Umlauf schalten, gemäß der Betriebsanleitung der Anlage. Während der Entlüftung muss eine drucklose Abfuhr eingeschlossener Luft gewährleistet sein.
- ➤ Zur Entlüftung der Pumpe den Motor kurzzeitig ein- und sofort wieder ausschalten (Tipp-Betrieb). Dieser Vorgang ist so oft zu wiederholen, bis eine vollständige Entlüftung der Pumpe sichergestellt ist.
- Manuell geöffnete Entlüftungsanschlüsse wieder verschließen.

#### Inbetriebnahme

- ▶ Wenn die vollständige Entlüftung der Pumpe sichergestellt ist, Motor einschalten. Pumpe solange drucklos laufen lassen, bis die Anlage vollständig entlüftet ist. Zur Anlagenentlüftung ist die Betriebsanleitung der Anlage zu beachten.
- Anlage gemäß Betriebsanleitung der Anlage in Betrieb nehmen und Pumpe belasten.
- Nach einiger Betriebszeit Druckflüssigkeit im Tank auf Blasen oder Schaumbildung an der Oberfläche prüfen.

### **Betrieb**

- ▶ Während dem Betrieb auf Veränderungen der Geräuschcharakteristik achten. Aufgrund einer Erwärmung der Druckflüssigkeit ist ein leichter Geräuschanstieg normal. Erhebliche Geräuscherhöhung oder kurzzeitige stochastische Geräuschveränderungen können ein Hinweis auf Ansaugen von Luft sein. Bei zu kurzen Saugrohren oder zu geringen Füllstandshöhen der Druckflüssigkeit kann Luft auch über einen Strudel angesaugt werden.
- Änderungen von Betriebsgeschwindigkeiten, Temperaturen, Geräuschanstieg oder Leistungsaufnahme indizieren Verschleiß oder Schäden an der Anlage oder der Pumpe.

#### Wiederinbetriebnahme

- ▶ Pumpe und Anlage auf Undichtigkeiten überprüfen. Leckagen deuten auf Undichtigkeiten unterhalb des Druckflüssigkeitsspiegels hin. Ein gestiegener Druckflüssikdeitsspiegel im Tank deutet auf Undichtigkeiten oberhalb des Druckflüssigkeitsspiegels hin.
- ▶ Bei Anordnung der Pumpe oberhalb des Druckflüssigkeitsspiegels kann die Pumpe über Undichtigkeiten, zum Beispiel einem verschlissenen Wellendichtring, leerlaufen. In diesem Fall muss bei der Wiederinbetriebnahme erneut entlüftet werden. Instandsetzung veranlassen.
- Nach Instandsetzungs- und Wartungsarbeiten muss neu entlüftet werden.
- ► Bei intakter Anlage Motor einschalten.

#### Allgemeines

- ▶ Die von uns gelieferten Pumpen sind auf Funktion und Leistung geprüft. Die Gewährleistung gilt ausschließlich für die ausgelieferte Konfiguration.
- ► Reparaturen dürfen nur beim Hersteller oder dessen autorisierten Händlern und Niederlassungen durchgeführt werden. Der Anspruch auf Gewährleistung erlischt bei fehlerhafter Reparatur, Montage, Inbetriebnahme und Betrieb, sowie bei nicht bestimmungsgemäßer Verwendung und/oder unsachgemäßer Handhabung.
- Durch das Öffnen der Innenzahnradpumpe sowie nach einem Umbau oder einer Erweiterung erlischt der Anspruch auf Gewährleistung.

### Hinweise!

- ► Montage, Wartung und Instandsetzung der Pumpe darf nur von autorisiertem, ausgebildeten und eingewiesenem Personal durchgeführt werden!
- ► Pumpe darf nur mit den zulässigen Daten betrieben werden (siehe Seite 4).
- ▶ Die Pumpe darf nur in einwandfreiem Zustand betrieben werden!
- ▶ Bei allen Arbeiten an der Pumpe Anlage drucklos schalten!
- ► Eigenmächtige Umbauten und Veränderungen, welche die Sicherheit und Funktion betreffen sind nicht zulässig!
- ► Schutzvorrichtungen (z. B. Kupplungsschutz) anbringen bzw. vorhandene Schutzvorrichtungen nicht entfernen!
- ► Stets auf festen Sitz aller Befestigungsschrauben achten (Vorgeschriebenes Anziehdrehmoment beachten)!
- ▶ Die allgemein gültigen Sicherheits- und Unfallverhütungsvorschriften müssen unbedingt eingehalten werden!

# **PGH** | Innenzahnradpumpe Inbetriebnahmehinweise

16

# Bosch Rexroth AG

Industrial Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Tel. +49 (0) 9352 / 40 30 20 my.support@boschrexroth.de www.boschrexroth.de © Alle Rechte Bosch Rexroth AG vorbehalten, auch bezüglich jeder Verfügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie für den Fall von Schutzrechtsanmeldungen.

Die angegebenen Daten dienen allein der Produktbeschreibung. Eine Aussage über eine bestimmte Beschaffenheit oder eine Eignung für einen bestimmten Einsatzzweck kann aus unseren Angaben nicht abgeleitet werden. Die Angaben entbinden den Verwender nicht von eigenen Beurteilungen und Prüfungen. Es ist zu beachten, dass unsere Produkte einem natürlichen Verschleiß- und Alterungsprozess unterliegen.